Bulk Ship Fleet Renewal and Deployment under Uncertainty: A Multi-Stage Stochastic Programming Approach
نویسندگان
چکیده
We study a maritime fleet renewal and deployment problem under demand and charter cost uncertainty. A decision-maker for an industrial bulk shipping company must determine a suitable fleet size, mix, and deployment strategy to satisfy stochastic demand over a given planning horizon. She may acquire vessels in two ways: time chartering and voyage chartering. Time charter vessels may be acquired for different durations of time and this decision is made before demand and charter costs are known, while voyage charter vessels are chartered for a single voyage from a supply port to a demand port and the decision is made after demand is known. The goal is to determine an optimal fleet size and deployment strategy that minimizes the expected acquisition and transportation costs, while satisfying demand and deployment constraints. To handle the simultaneous fluctuations in demand and charter costs, we introduce a multi-stage stochastic programming look-ahead model that is solved in a rolling horizon fashion and explore the ramifications of using different scenario trees with various recourse options. Computational results indicate that our approach is superior to traditional planning methods that rely on ad hoc heuristics and deterministic optimization models using expected value forecasts of stochastic parameters.
منابع مشابه
A two-stage stochastic programming model for the optimal sizing of hybrid PV/diesel/battery in hybrid electric ship system
Ships play the major role in bulk transportation and they need their special energy system. This paper proposes a stochastic programing method for optimal sizing of a hybrid ship power system with energy storage system (ESS), photovoltaic power (PV) and diesel generator. To account for uncertainties, in this study a two-stage stochastic mixed-integer non-linear programing is used to model the o...
متن کاملA Stochastic Programming Approach for a Multi-Site Supply Chain Planning in Textile and Apparel Industry under Demand Uncertainty
In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, t...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملMulti-Objective Stochastic Programming in Microgrids Considering Environmental Emissions
This paper deals with day-ahead programming under uncertainties in microgrids (MGs). A two-stage stochastic programming with the fixed recourse approach was adopted. The studied MG was considered in the grid-connected mode with the capability of power exchange with the upstream network. Uncertain electricity market prices, unpredictable load demand, and uncertain wind and solar power values, du...
متن کاملA queuing-location model for in multi-product supply chain with lead time under uncertainty
Supply chain network design (SCND) problem has recently been gaining attention because an integrated management of the supply chain (SC) can reduce the unexpected/undesirable events and can affect definitely the efficiency of all the chain. A critical component of the planning activities of a manufacturing firm is the efficient design of its SC. Hence, SCND affords a sensitive platform for effi...
متن کامل